Обеспечение равномерности толщины ультратонких плёнок WSi при магнетронном распылении из двух источников

С. Хыдырова, М.Ю. Акишин, Д.Д. Васильев, К.М. Моисеев Москва, МГТУ им. Н.Э. Баумана, ул. 2-я Бауманская, д. 5, стр. 1 e-mail: hydyrovas@yandex.ru, d.d.vasiliev@bmstu.ru, k.moiseev@bmstu.ru

Для достижения высоких выходных характеристик однофотонных детекторов на основе плёнок WSi необходима высокая равномерность толщины плёнки более 95%. В работе представлено проведенное на основании экспериментально определенного потока от одного магнетрона математическое моделирование неравномерности толщины ультратонких плёнокWSi, формируемых магнетронным распылением из двух источников, в зависимости от расположения магнетронов относительно подложкодержателя. По результатам моделирования неравномерности выдвинуты требования к конструкции и расположению в камере магнетронного узла, при которых обеспечивается требуемая неравномерность толщины плёнки менее 5%.

Providing of ultra-thin film thickness uniformity by magnetron sputtering from two sources. S. Hydyrova, M.Yu. Akishin, D.D. Vasilev, K.M. Moiseev. To achieve high characteristics of single-photon detectors based on WSi thin films it is necessary to provide high film thickness uniformity more than 95%. This paper presents a mathematical modeling of the thickness uniformity of an ultra-thin film formed by magnetron sputtering from two sources, based on an experimentally determined mass flow from a single magnetron, depending on the location of the magnetrons relative to the substrate holder. According to the results of non-uniformity modeling, the requirements for the design and location of the magnetron unit in the chamber were made, which ensured the required nonuniformity of the film thickness of less than 5%.

Введение

Сверхпроводниковые однофотонные детекторы на основе нанопроволоки (SNSPD) предназначены для детектирования излучения (одиночных фотонов) видимого (400...780 нм) и ближнего ИК-диапазона (0,74...2,5 мкм). SNSPD применяются в качестве счетчиков фотонов в различных областях: в квантовой криптографии, в оптической когерентной томографии и квантовой оптической когерентной томографии, в ЛИДАР-системах, при астрономических исследованиях, а также при тестировании микросхем [1].Перспективным является применение SNSPD в оптических квантовых вычислениях, так как для реализации квантовой оптической интегральной схемы необходимы источник фотонов, логические элементы и приемник (детектор) фотонов [2]. Кроме того, SNSPD востребованы в оптических системах дальней космической связи [3].

Однофотонные детекторы на основе сверхпроводников обладают преимуществами перед альтернативными в связи с более широким спектральным диапазоном детектирования, высокой квантовой эффективностью, большим быстродействием и меньшим числом темновых отсчетов, а также более высокими рабочими температурами [1, 4].

Одним из наиболее перспективных материалов чувствительного элемента SNSPD является WSi [5], детекторы на основе которого демонстрируют высокую квантовую эффективность до 93% [6].

Толщины сверхпроводящих плёнок для SNSPDсоставляет менее 10 нм [7]. При таких значениях наблюдается сильное изменение сверхпроводящих параметров материала в зависимости от толщины [8], что обуславливает значительное влияние толщины плёнки на выходные характеристики детектора: квантовую эффективность, быстродействие, рабочую температуру, число темновых отсчетов [9, 10, 11]. В связи с этим для обеспечения воспроизводимости выходных характеристик детектора необходимо получение плёнок с высокой равномерностью толщины более 95%.

Одним из наиболее распространенных методов формирования сверхпроводящих ультратонких плёнок для SNSPD, применяемых в том числе в лаборатории кафедры «Электронные технологии в машиностроении», является магнетронное распыление. Формирование плёнки WSi в нашей лаборатории осуществляется на установке ВУП-11М [12] распылением мишеней W и Si двух магнетронов. Угол между осью каждого из магнетронов и подложкодержателем составляет 45°. Центр подложкодержателя совпадает с пересечением осей магнетронов [12]. В [13] показано, что реализация вращения подложкодержателя при данном расположении магнетронов обеспечит требуемую неравномерность толщины плёнки менее 5%. Однако нынешнее расположение подложкодержателя в камере (в плоскости, расположенной под углом к оси вакуумного ввода подложкодержателя) не позволяет осуществлять вращение подложкодержателя, в связи с чем формируемые двухкомпонентные плёнки обладают высокой неравномерностью толщины и состава по подложке.

Для обеспечения неравномерности толщины плёнки менее 5% целесообразно изменить компоновку и расположить два магнетрона на одном фланце камеры симметрично относительно подложки, а подложкодержатель – на противоположном фланце, что позволит реализовать вращение подложкодержателя и снизить неравномерность толщины и состава плёнки.

В данной работе рассматривается способ обеспечения требуемой неравномерности толщины двухкомпонентной плёнки менее 5% посредством вновь разрабатываемой конструкции магнетронного узла. Для выдвижения требований к конструкции магнетронного узла (определения расстояния между осями магнетронов и угла наклона оси магнетрона относительно оси подложкодержателя) проводится моделирование неравномерности толщины плёнки при совместном распылении из двух источников.

Экспериментальное определение пространственного распределения потока W от одного магнетрона

Моделирование неравномерности толщины в зависимости от взаимного расположения магнетронов и подложкодержателя проводится на основании регрессионной модели пространственного распределения потока от одного магнетрона, полученной на основании экспериментального измерения скорости осаждения.

Чтобы определить поток материала от одного магнетрона, с помощью метода пьезоэлектрического микровзвешивания [14]определяется масса, осажденная на закрепляемые в 9 экспериментальных точках (рис. 1а) на подложкодержателе кварцевые резонаторы. Осаждение вольфрама W проводилось при пяти различных расстояниях *гмежду* подложкодержателем и магнетроном: 50, 70, 90, 110 и 130 мм (рис. 2б). Формирование плёнки вольфрама магнетронным распылением проводится на установке ВУП-11М. Параметры режима осаждения плёнки вольфрама[15] приведены в таблице 1.

Таблица 1. Параметры режима осаждения плёнки W магнетро	онным распылением.
---	--------------------

Параметр	Значение		
Сигнал	Импульсный		
Мощность, Вт	120		
Частота, кГц	15		
Коэффициент заполнения, %	80		
Поток аргона, л/ч	1,56		
Предельное давление, 10 ⁻⁵ мбар	1,1		
Время тренировки мишени, мин	5		
Время нанесения, мин	2		

Рис. 1. Схема расположения экспериментальных точек: а) расположение подложкодержателя относительно магнетрона; б) расположение кварцевых резонаторов на подложкодержателе.

Рис. 2. Регрессионная модель зависимости потока Q [г/(см² с)] от радиуса r и высоты z (расположение магнетрона соответствует началу координат): а) линии уровня; б) график поверхности.

В результате проведенных экспериментов рассчитана удельная масса осаждаемой в каждой из экспериментальных точек плёнки. Поток Q [г/(см²·с)] определяется из отношения удельной массы к времени t осаждения плёнки, рассчитанные значения потока в экспериментальных точках для расстояний z от магнетрона представлены в таблице 2.

№ резонатора	$z_1 = 50 \text{ MM}$	$z_2 = 70 \text{ MM}$	$z_3 = 90 \text{ MM}$	$z_4 = 110 \text{ mm}$	$z_5 = 130 \text{ Mm}$
1	0,491	0,339	0,337	0,274	0,187
2	0,984	0,447	0,478	0,309	0,245
3	0,536	0,354	0,444	0,252	0,240
4	0,884	0,618	0,492	0,415	0,279
5	2,086	0,958	0,763	0,450	0,339
6	0,808	0,607	0,534	0,286	0,289
7	0,537	0,501	0,417	0,321	0,248
8	0,799	0,603	0,570	0,322	0,285
9	0,510	0,395	0,386	0,219	0,236

Таблица 2. Значения потока $O[r/(cm^2 \cdot c)]$ W в экспериментальных точках.

Математическая модель зависимости потокаматериала от пространственных координат относительно магнетрона получена на основании экспериментальных значений потока *Q*с помощью регрессионного анализа в среде Mathcad.

С помощью функции регрессии полиномом третьего порядка построены регрессионные модели потока Q в зависимости от расположения точки на подложкодержателе в декартовых координатах x, y. Найдены координаты экстремумов функций, чтобы исключить влияние погрешности закрепления центрального резонатора на подложкодержателе (несоответствие центра резонатора 5 и оси магнетрона (рис. 1 а, б). Затем координаты экспериментальных точек 1...9 для каждой высоты закрепления подложкодержателя z переводятся в полярные координаты r и φ и значения потока Q усредняются по углу φ согласно теореме о среднем. Таким образом, получены функции зависимости потока Q(r) от радиуса относительно оси магнетрона для каждой высоты.

Полученные кривые Q(r) при значениях высот $z_1 - z_5$ объединяются функцией регрессии в модель пространственного распределения потока материала Q в заданной точке от одного магнетрона в зависимости от радиуса *r*и высоты *z* (рис. 2), где *r* и *z* – радиус и высота в цилиндрических координатах относительно магнетрона. Расположение магнетрона соответствует началу координат на графиках.

Полученное пространственное распределение потока материала от одного магнетрона *Q* позволяет смоделировать зависимость неравномерности толщины плёнки от взаимного расположения подложки и магнетронов при распылении из двух источников.

Моделирование неравномерности толщины в зависимости от расположения магнетрона относительно подложки

Для моделирования неравномерности толщины плёнки в зависимости от расположения подложки относительно магнетрона координаты r и z выражаются через угол β и расстояния B и L (рис. 3).

Рис. 3. Расчетная схема расположения подложки относительно магнетронов.

На основании распределения потока в Mathcad построена модель неравномерности толщины плёнки Δ и модель удельной массовой скорости осаждения плёнки (что эквивалентно потоку Q) при распылении из двух источников в зависимости от L и Bпри значениях угла β от 0 до 45°с шагом 5°, диапазоны варьирования L от 0 до 40 мм, B от 90 до 130 мм.

Из 10 полученных графиков поверхности неравномерности Δ в зависимости от расстояний *L* и *B* выявлено, что наименьший угол β , при котором обеспечивается Δ менее 5%, равен 5°. С увеличением β увеличиваются диапазоны *B* и *L*, в которых выполняется условие $\Delta < 5\%$, и эти области смещаются в сторону меньших значений *B*.

Исходя из графиков зависимости скорости осаждения от B и L при различных β получено, что влияние угла β на скорость осаждения незначительно. Скорость осаждения снижается с увеличением расстояния B и эксцентриситета L.

Помимо неравномерности толщины плёнки $\Delta < 5\%$ расположение магнетронов в камере должно обеспечивать высокую скорость осаждения плёнки. Угол наклона магнетрона β должен быть наименьшим для размещения магнетронного узла в камере установки ВУП-11М. Исходя из этих требований, на основании моделирования неравномерности и скорости осаждения выбран угол $\beta = 10^{\circ}$. При $\beta = 10^{\circ}$ неравномерность менее 5% обеспечивается при расстоянии B = 105...120 мм и эксцентриситете L = 0...5 мм. В выбранном диапазоне наибольшая скорость осаждения 0,496 г/(см²·с) достигается при L = 0 мм и B = 105 мм. Модели неравномерности толщины плёнки Δ [%] и скорости осаждения Q [г/(см²·с)] при $\beta = 10^{\circ}$ в зависимости от L и B представлены на рис. 4 и 5 соответственно.

Рис. 4. Модель неравномерности толщины плёнки Δ [%] при угле наклона магнетрона β = 10° в зависимости от расстояния В от подложкодержателя и эксцентриситета L: а) график поверхности; б) линии уровня.

Рис. 5. Модель скорости осаждения Q [г/(см2·с)] при угле наклона магнетрона β = 10° в зависимости от расстояния В от подложкодержателя и эксцентриситета L: а) график поверхности; б) линии уровня.

Результаты моделирования неравномерности толщины двухкомпонентной плёнки

На основании проведенного в *Mathcad* моделирования неравномерности толщины и скорости осаждения плёнки выдвинуты следующие требования к расположению магнетронов относительно подложкодержателя, при которых обеспечивается неравномерность толщины плёнки менее 5%:

- угол наклона магнетрона $\beta > 10^{\circ}$;
- эксцентриситет L < 5 мм;
- расстояние *B* =105...130 мм.

По результатам моделирования скорости осаждения плёнки при β в указанных диапазонах *L* и *B* наибольшая осаждения 0,496 г/(см²·с)обеспечивается при *L* = 0 мм и *B* = 105 мм.

На основании приведенных условий выбираются k и h (рис. 4):

$$h = B\cos\beta - L\sin\beta = 105 \cdot \cos(10^\circ) = 103.4 \approx 104 \text{ MM}$$
 (1);

$$k = Bsin\beta + Lcos\beta = 105 \cdot sin(10^\circ) = 18,2 \text{ MM} \approx 20 \text{ MM}$$
(2).

Рис. 6. Расчетная схема расположения магнетрона относительно подложки.

Таким образом, исходя из требований к неравномерности толщины менее 5%, высокой скорости осаждения плёнки и малом угле наклона выбраны расстояния от подложкодержателя до магнетрона k = 20 мм и h = 104 мм при угле $\beta = 10^{\circ}$, что удовлетворяет требуемым условиям обеспечения неравномерности толщины пленки менее 5%. Данная компоновка магнетронного узла может быть реализована на установке ВУП-11М для формирования двухкомпонентных тонких плёнок WSi для однофотонных детекторов.

Заключение

На основании проведенного моделирования неравномерности толщины плёнки WSiв зависимости от расположения магнетронов относительно подложкодержателя определено, что требуемая неравномерность толщины менее 5% плёнки 0,5 г/(см²·с) обеспечивается при $\beta = 10^{\circ}$, расстоянии B = 105...120 мм и эксцентриситете L = 0...5 мм. В выбранном диапазоне наибольшая скорость осаждения 0,496 г/(см²·с)достигается при L = 0 мм и B = 105 мм, что соответствует расстоянию между магнетронами 2k = 40 мм, расстоянию между магнетронами и подложкодержателем h = 104 мм при угле между осями магнетрона и подложкодержателя $\beta = 10^{\circ}$. Данная компоновка магнетронного узла впоследствии может быть реализована на установке ВУП-11М для формирования двухкомпонентных тонких плёнок WSi для однофотонных детекторов.

Литература

- 1. Минаева, О. В., Окунев, О. В., & Чулкова, Г. М. (2013). Быстродействующий однофотонный детектор на основе тонкой сверхпроводниковой пленки NbN.
- 2. Смирнов, К.В. (2013). Особенности разогрева и релаксации горячих электронов в тонкопленочных сверхпроводниковых наноструктурах и 2D полупроводниковых гетероструктурах при поглощении излучения инфракрасного и терагерцового диапазонов (дис. на соиск. уч. ст. док. физ.-мат. наук, Москва).
- 3. Санджинетти, Б., Амри, Э., & Ричоу, Ф. (2017). Однофотонные детекторы для атмосферных оптических линий связи. Фотоника, (3), 56-69.
- 4. Kitaygorsky, J. (2008). Photon and dark counts in NbN superconducting single-photon detectors and nanostripes (Doctoral dissertation, New York).
- 5. Zhang, X. (2018). Characteristics of tungsten silicide and its application for single X-ray photon detection (Doctoral dissertation, University of Zurich).
- Marsili, F., Verma, V. B., Stern, J. A., Harrington, S., Lita, A. E., Gerrits, T., ... & Nam, S. W. (2013). Detecting single infrared photons with 93% system efficiency. Nature Photonics, 7(3), 210.
- 7. Jin Jin, Fengfeng Fu, Xiaoqing Jia, Lin Kang, Zhihe Wang, Xuecou Tu, Labao Zhang 2019 *IEEE Transactions on Applied Superconductivity*29, 5, 18483128.
- Zhang, X., Engel, A., Wang, Q., Schilling, A., Semenov, A., Sidorova, M., ... & Siegel, M. (2016). Characteristics of superconducting tungsten silicide WxSi1-x for single photon detection. Physical Review B, 94(17), 174509.
- 9. Murphy, R., Grein, M., Gudmundsen, T., McCaughan, A., Najafi, F., Berggren, K. K., ... & Dauler, E. (2015, May). Saturated photon detection efficiency in NbN superconducting photon detectors. In CLEO: QELS_Fundamental Science (pp. FF2A-3). Optical Society of America.
- 10. Ren, X. (2015). Advanced photon counting techniques for long-range depth imaging (Doctoral dissertation, Heriot-Watt University).
- Banerjee, A., Baker, L. J., Doye, A., Nord, M., Heath, R. M., Erotokritou, K., ... & Hadfield, R. H. (2017). Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires. Superconductor Science and Technology, 30(8), 084010.
- 12. Vasilev D., Malevannaya E. and Moiseev K. 2017 J. of Phys.: Conf.Ser.872, 012027.
- 13. Васильев Д.Д., Малеванная Е.И., Моисеев К.М. Распределение соотношения компонентов по подложке при нанесении ультратонких пленок WSi из двух источников методом магнетронного распыления // «Вакуумная наука и техника» Материалы XXII научно-технической конференции. Под редакцией академика А.С.Бугаева. М.~:.2015 С.18-22.
- 14. Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für physik, 155(2), 206-222.
- 15. Seleznev V., Divochiy A., Vakhtomin Yu., Morozov P., Zolotov P., Vasil'ev D., Moiseev K., Malevannaya E. and Smirnov K. 2016 J. of Phys.: Conf. Ser.737,012032.