Литература

- 1. Савицкий Е.М., Буров И.В., Литвак Л.Н., Пирогова С.В. Электрические и эмиссионные свойства сплавов. М.: Наука, 1978. 269 с.
- 2. Дюбуа Б.Ч., Култашев О.К., Поливникова О.В. Эмиссионная электроника, нанотехнология, синергетика (к истории идей в катодной технологии) // Электронная техника. Сер. 1. СВЧ-техника. 2008. Вып. 4 (497). С. 3-22.
- 3. Фоменко В.С. Эмиссионные свойства материалов: справочник. Издание четвертое, переработанное и дополненное // Киев: Наукова думка, 1981. 340 с.
- 4. Агеев В.Н., Бурмистрова О.П., Кузнецов Ю.А. Десорбция, стимулированная электронными возбуждениями // УФН. 1989. Том 158, вып. 3. С. 389-420.
- 5. Ли И.П. Формирование структуры и физических свойств катодов для разработки малогабаритных магнетронов с безнакальным запуском // Дисс. канд. техн. наук: 01.04.07. М.: МГТУ им. Н.Э. Баумана. 2012. 123 с.
- 6. Капустин В.И. Физико-химические основы создания многокомпонентных оксидсодержащих катодных материалов // Перспективные материалы. 2000. № 2. С. 5 17.
- Капустин В.И., Ли И.П., Шуманов А.В., Лебединский Ю.Ю., Заблоцкий А.В. Физический механизм работы скандатных катодов СВЧ приборов // ЖТФ. 2017. Том 87. Вып. 1. С. 105-115.

Кристаллическая и электронная структура компонентов палладий-бариевых катодных материалов

^{*}В.И. Капустин, И.П. Ли, А.В. Шуманов, С.О. Москаленко, ^{*}А.А. Буш, ^{**}Ю.Ю. Лебединский Москва, АО «Плутон», ул. Нижняя Сыромятническая, 11 ^{*}Москва, Московский технологический университет (МИРЭА), пр. Вернадского, 78 ^{**}Московская обл., Долгопрудный, Московский физико-технический институт, Институтский пер., 9 E-mail:i.li@pluton.msk.ru, kapustin@mirea.ru

Методом рентгеноструктурного анализа высокого разрешения определены размеры и кристаллографическая ориентация нанокристаллитов фаз Pd и Pd₅Ba в палладий-бариевом катоде. Методом электронной спектроскопии для химического анализа исследованы химическое состояния Ba и Pd в катодном материале и определен фазовый состав материала, в том числе наличие в фазах растворенных микропримесей.

The Crystalline and Electron Structure of the Palladium-Barium Cathode Material Components. V.I. Kapustin, I.P. Li, A.V. Shumanov, S.O. Moskalenko, A.A. Bush, Yu.Yu.Lebedinsky. ByusingofhighresolutionX-raydiffractionmethod, the dimensions and crystallographic orientation of PdandPd₃Ba nanocrystal phases in the Pd-Ba cathodes was investigated. Byusing of the electron spectroscopy for chemical analysis the chemical states of BaandPd in the Pd-Ba cathodes was investigated and the phases and micro impurities content of materials was determined.

Палладий-бариевые катодные материалы представляют собой композицию из порошков палладия и интерметаллида Pd₅Ba с содержанием бария в композиции 0.5-2.0 %. Pd₅Ba получают электродуговой переплавкой бария и палладия в среде аргона с избытком палладия в количестве 5-8 % по отношению к стехиометрии соединения.

Катоды СВЧ приборов формируют либо прессованием и прокаткой композиции «палладий – интерметаллид» в ленту толщиной 200 мкм, которая используется в качестве

внешнего слоя цилиндрического или плоского катода, либо прессованием композиции в форме катода электронного прибора.Палладий-бариевые катоды начиная с 60-х годов прошлого века широко применяют в СВЧ ЭВП, прежде всего в магнетронных усилителях и генераторах. Рабочая температура катодов лежит в интервале 300-700 °C, при этом катод подвергается электронной бомбардировке со средней мощностью 5-15 Вт/см².

Эмиссионные свойства и долговечность Pd-Ba катодов, а также их устойчивость к электронной бомбардировке зависят от технологических параметров их изготовления и активирования в приборах. В частности, оптимальным режимом активирования катодов является прогрев в вакууме 10^{-7} Па при температуре 1070 ⁰C в течение 6-8 ч [1]. Чувствительность свойств изначально двухфазных Pd-Ba катодов к температуре и длительность времени активирования свидетельствует о протекании в катодном материале физико-химических процессов, сопровождающихся формированием в материале новых фаз. Поэтому для оптимизации технологий катодов под различные типы приборов необходимы адекватные физические представления, описывающие механизм формирования эмиссионных центров, обеспечивающих требуемое сочетание эмиссионных свойств фаз, сформировавшихся в материале в результате его активирования. Отметим, что исходные фазыРd и Pd₅Ba, в соответствии с установленными физико-химическими закономерностями эмиссионных свойств чистых металлов и сплавов [2], не могут обеспечить сочетание значений σ и ϕ , требуемых для катода магнетрона.

Целью данной работы является исследование кристаллической и электронной структуры компонентов палладий-бариевых катодных материалов методом рентгеноструктурного анализа высокого разрешения и методом электронной спектроскопии для химического анализа.

Для изготовления катодных материалов в качестве исходных компонентов использовали Ва металлический (ТУ 48–4–465–85) и Рd порошкообразный марки ПдАП–1 (ГОСТ 14836–82) фракции 20-45 мкм. Интерметаллид Pd₅Ba выплавляли в электродуговой печи с нерасходуемым электродом в среде очищенного аргона. После выплавки интерметаллид размалывали в шаровой мельнице и агатовой ступке, просеивали на ситах. Для изготовления катодов использовали фракцию интерметаллида 20-45 мкм.

Исследования в растровом электронном микроскопе показали, что частицы порошков Pd и Pd₅Bacoстоят из кристаллов размером 1-3 мкм и менее. Размеры кристаллов Pdu содержание в них микропримесей зависят от технологических параметров их производства на заводе-изготовителе. Размеры кристаллов Pd₅Ba, а также характер и содержание в них примесей зависят от скорости охлаждения при кристаллизации.

Размеры кристаллитов Pd и Pd₅Bau значения параметров их кристаллических структур исследованы на установке ДРОН-3 с внутренним эталоном, в качестве которого использовали порошок Ge фракции 20-25 мкм, полученный размолом монокристалла Ge, который добавляли в количестве 20-25 % в исследуемые порошки. Все исследования проведены с использованием Cu-K α 1 излучения с длиной волны 1.540598 Å. Положение пиков на рентгеновских спектрах с поправкой на положение пиков эталона позволило определить значения параметров кристаллической решетки кристаллитов Pd и Pd₅Ba, а уширение пиков Pd и Pd₅Ba - определить размеры кристаллитов по основным кристаллографическим направлениям. Для расчета размеров кристаллитов использовали известное уравнение Шеррера - Селякова

$$\Delta(2\theta_{hkl}) = \frac{a\lambda}{L_{hkl}cos\theta} + b , \qquad (1)$$

где L_{hkl} – средний размер частиц, Å, а – коэффициент, близкий к единице (0,94), λ – длина волны рентгеновского излучения, $\Delta(2\theta_{hkl})$ – ширина пиков на половине высоты (в радианах), θ – угловое положение пика в спектре, b – ширина германиевого пика, приведенного к положению пика исследуемого вещества. Если перевести значение уширения пиков в градусы, то средний размер частиц порошка будет равен

$$L_{hkl} = \frac{180a\lambda}{\pi(\Delta - b)cos\theta} \ . \tag{2}$$

Структуру электронных уровней Pd и Ba в образцах исследовали с использованием спектрометра ThetaProbe фирмы ThermoScientific методом ЭСХА, шаг развертки спектров –

0,05 eV. Обработку результатов исследований проводили с использованием методик, описанных в работе [3]. Образцы для исследований изготавливали прессованием исходных порошковых компонентов в таблетки диаметром 6,7 мм и толщиной 1 мм, после чего таблетки спекали в вакууме при температуре 1100 °C в течение 2 часов.

На рис. 1а в качестве примера приведена рентгенограмма фазы Pd₅Ba+8% Pd, навеска при электродуговой плавке 50 г, фракции порошка после размола и просеивания 25-45 мкм. На рис. 1б в качестве примера приведена угловая зависимость уширения пиков фазы Pd₅Ba+8%Pd. Величину уширения пиков фаз Pd и Pd₅Ba(рис. 1б) определяли по расстоянию от значений уширения для каждого пика фаз до кривой, описывающей угловую зависимость уширения пиков Ge.

В таблице 1 приведены сводные данные по параметрам кристаллической структуры Pd и размерам кристаллитов по кристаллографическим направлениям. Палладий имеет простую кубическую решетку с параметром элементарной ячейки по данным базы ICCDдля массивного образца a=3.8902Å. Образцы 1 и 3 соответствуют различным партиям 1 и 2 порошков Pd, полученным с завода-изготовителя. Образцы 2 и 4 – это образцы 1 и 3 соответственно, но после вакуумного отжига при температуре 1000 ^oC в течение 30 мин. Как видно из таблицы 1, отжиг приводит к изменению параметра кристаллической решетки в материалах из партии 1 и 2 в примерно на 25%.

В таблице 2 приведены сводные данные по параметрам кристаллической структуры фаз $Pd_5Ba+8\%Pd$. Образец А получен переплавкой компонентов с избытком Pd при общей массе навески 50 г, а образец В – переплавкой компонентов с избытком Pd при общей массе навески 100 г. Основное отличие образцов А и В состоит в том, что скорость охлаждения образца В при кристаллизации меньше, чем образца А. Интерметаллид Pd_5Ba по данным базы ICCD имеет гексагональную структуру с параметрами решетки a=5.5400 Å, c=4.3300 Å.

N⁰	Фаза	Параметр	Изменение	Индекс	Размер
п/п		ячейки а,	параметра ячейки	направления	кристаллитов по
		Å	Δa, Å	(hkl)	направлению, nm
	Pd,			(111)	360
1	партия 1,	3.8898(8)	$\Delta a = -0.0003(2)$	(002)	290
	исходный			(202)	350
	Pd,			(111)	680
2	партия 1,	3.8898(1)	$\Delta a = -0.0003(9)$	(002)	230
	отжиг			(202)	400
	Pd,			(111)	420
3	партия 2,	3.8899(1)	$\Delta a = -0.0002(9)$	(002)	170
	исходный			(202)	145
	Pd,			(111)	640
4	партия 2,	3.8898(3)	$\Delta a = -0.0003(7)$	(002)	500
	отжиг			(202)	660

Таблица 1. Параметры кристаллической структуры Pd и размеры кристаллитов.

	1	F F	F F F	The state of the s				
N⁰	Фаза	Параметры	Изменение	Индекс	Размер			
п/п		ячейки а и с,	параметров	направления	кристаллитов по			
		Å	ячейки Δа и Δс, Å	(hkl)	направлению, nm			
	Фазы Pd ₅ Ba + 8% Pd, навеска при плавке 50 г							
	Pd ₅ Ba	a=5.5016(3)	$\Delta a = -0.0383(7)$	(0001)	240			
		c=4.3520(3)	$\Delta c = +0.0220(3)$	(1010)	195			
Α				(111)	170			
	Pd	a=3.8901(4)	$\Delta a = -0.0000(6)$	(002)	235			
				(202)	420			
Фазы Pd ₅ Ba + 8% Pd, навеска при плавке 100 г								
	Pd ₅ Ba	a=5.5026(2)	$\Delta a = -0.0373(8)$	(0001)	2620			
В		c=4.3514(2)	$\Delta c = +0.0214(2)$	(1010)	290			
				(111)	130			
	Pd	a=3.8905(5)	$\Delta a = +0.0003(5)$	(002)	160			
				(202)	660			

Таблица 2.Параметры кристаллической структуры фаз Pd₅Ba + 8%Pd.

Как видно из таблицы 2, величина скорости кристаллизации интерметаллида Pd₅Ba не существенно влияет на размер кристаллитов вдоль направления **a**, однако уменьшение скорости кристаллизации приводит к увеличению размера кристаллитов вдоль направления **c** примерно в 10 раз.Размеры кристаллитов Pd после переплавки соизмеримы с размерами кристаллитов исходного Pd и Pd после отжига из таблицы 1. Однако параметры кристаллической решетки кристаллитов Pd, образовавшихся после выплавки интерметаллида c избытком Pd, принципиально отличаются от параметров кристаллитов Pd из таблицы 1. При кристаллизации с высокой скоростью охлаждения, как видно для Pd из образца A таблицы 2, параметр его кристаллической решетки практически не отличается от параметра решетки для массивного образца B таблицы 2, параметр его кристаллитов. Более того, при кристаллизации с более низкой скоростью охлаждения, как видно для Pd из образца B таблицы 2, параметр его кристаллитов, даже превышает параметр кристаллической решетки для массивного образца Pd.

На рис. 2а приведен участок спектра ЭСХА 3d3 и 3d5 уровнейРd для образца B с разбиением на Гауссовы пики, относящиеся к ризличным химическим состояниям Pd. Пики соответствуют состояниям Pd: 1 и 8 - Pd₅Ba, 2 и 9 –Pd, 3 и 10 - Pd[O;H], 4 и 11 - Pd[C], 5 и 12 - Pd[O], 6 и 13 – PdO, 7 и 14 - PdO₂. В квадратных скобках у фаз отмечены химические элементы, растворенные в кристаллитах этих фаз. На рис. 3б приведен спектр ЭСХА, относящийся к 3d5уровню Ва для образца В. Пики соответствуют состояниям Ba: 1 -Pd₅Ba[H], 2 - Ba(OH)₂:H₂O, 3 - Pd₅Ba[C], 4 - Pd₅Ba[O;H], 5 - Pd₅Ba, 6 - Pd₅Ba[O], 7 - BaO_(1-x), 8 -Ba_(1-y)O_(1-x)Pd_y.

В таблице 3 приведены сводные данные по химическим состояниям палладия в образцах 1 и 2 из таблицы 1 и образцах А и В из таблицы 2.Указаны положение пиков соответствующих химических состоянийЕ и интенсивность пиковІ. Востпроизводимость положения Гауссовых пиков различных химических состояний палладия в различных образцах составляет 0.02 eV, ширина всех пиков на половине высоты лежит в интервале 0.95-1.01 эВ.В таблице 3 приведены также результаты исследований образца 1 из таблицы 1, отожженного в водороде при температуре 600 $^{\circ}$ С в течение 30 мин, а затем в вакууме при температуре 1000 $^{\circ}$ С в течение 1 ч.

<u>N</u> ⁰	Фаза	Р	d №1, таблица	1	Рd ₅ Ba + 8%Pd, таблица 2		
11/11		Исходный	Отжиг	Отжиг в H ₂	Образец А	Образец В	
			в вакууме	и в вакууме			
		Е, эВ/	Е, эВ /	Е, эВ /	Е, эВ /	Е, эВ /	
		I, отн. ед.	I, отн. ед.	I, отн. ед.	I, отн. ед.	I, отн. ед.	
1	Pd₅Ba[H]	- / -	- / -	- / -	334.90 / 360	334.90 / 695	
2	Pd ₅ Ba	- / -	- / -	- / -	335.07 / 2061	335.06 / 1701	
3	Pd[H]	- / -	- / -	333.69 / 88	333.73 / 40	333.69 / 30	
4	Pd	335.29 /	335.30 /	335.24 /	335.30 / 5937	335.30 / 3773	
		8009	6526	4687			
5	Pd[O, H]	- / -	- / -	335.63 /	335.65 / 2111	335.64 / 1897	
				2421			
6	Pd[C]	335.89 / 653	335.88 / 571	335.89 / 431	335.91 / 1402	335.91 / 716	
7	Pd[O]	336.14 /	336.15 /	336.15 /	336.16 / 2852	336.16 / 1926	
		3191	2044	2402			
8	PdO	337.03 /	337.02 / 533	337.02 / 949	337.03 / 875	337.03 / 823	
		2179					
9	PdO ₂	337.90 / 591	337.91 / 538	337.90 / 427	337.91 / 513	337.92 / 346	
10	$PdCl_2$	338.58 / 263	338.58 / 208	338.58 / 157	- / -	-/-	

Таблица 3. Сводные данные по химическим состояниям Pd в различных образцах.

В таблице 4 приведены сводные данные по химическим состояниям Ва в образцах A и B, а также в катодных материалах, изготовленных из порошка палладия партии 1 и фаз A и B прессованием и спеканием в вакууме при 1050 ⁰C в течение 2ч.

Сдвиги электронных уровней элементов зависят от химического окружения элемента, в частности, от величины электронного сродства окружающих атомов. Поэтому расшифровку химических состояний Pd и Ba в различных образцах материалов проводили с учетом известных значений электронного сродства χ элементов: χ =0,56 эB для Pd, χ =0,75 эB для H, χ =1,27 эB для C, χ =1,46 эB для O, χ =3,62 эB для Cl, χ =0 эB для Ba. Востпроизводимость положения Гауссовых пиков различных химических состояний Ba в различных образцах составляет 0.02 eV, ширина всех пиков на половине высоты лежит в интервале 0.95-1.01 эB. Отметим, что ширина пиков Ba в оксидных системах (металлопористые, скандатные, оксидные катоды) составляет ≈ 2 эB из-за поляризации и зарядки поверхности диэлектриков [3].

Фаза $BaO_{(1-x)}$ – кристаллиты BaO, содержащие кислородные вакансии, фаза $Ba_{(1-y)}O_{(1-x)}Pd_y$ – кристаллиты BaO, содержащие кислородные вакансии и растворенные атомы Pd.Отметим, что ввиду малого содержания фазыPd₅Ba в катодных материалах, чувствительности метода ЭСХА недостаточно для регистрации в них кристаллитовBa_(1-y)O_(1-x)Pd_y на фоне шумов (два правых столбца таблицы 4).У пиков 1, 3 и 4 таблицы 4 в квадратных скобках указаны элементы, растворенные в кристаллитах фазы Pd₅Ba.

N⁰	Фаза	Фаза В,	ФазаА,	Катодный	Катодный
		Е, эВ/І, отн. ед.	Е, эВ/І, отн. ед.	материал	материал
				Pd+5% фазы В,	Pd+5% фазы А,
				Е, эВ/I, отн. ед.	Е, эВ/I, отн. ед.
1	Pd ₅ Ba[H]	778.03 / 627	778.02 / 398	778.03 / 327	778.05 / 245
2	Ba(OH) ₂ H ₂ O	779.12 / 1930	779.12 / 1825	779.12 / 1817	779.13 / 1796
3	Pd ₅ Ba[C]	779.88 / 5384	779.89 / 3476	779.77 / 4752	779.78 / 5187
4	Pd ₅ Ba[O, H]	780.27 / 10467	780.28 / 11468	780.26 / 8884	780.29 / 8547
5	Pd ₅ Ba	780.84 / 24314	780.86 / 20738	780.84 / 4462	780.83 / 4387
6	Pd ₅ Ba[O]	781.35 / 22111	781.37 / 18937	781.35 / 786	781.35 / 1128
7	BaO _(1-x)	781.93 / 10748	781.96 / 12297	781.93 / 379	781.96 / 380
8	$Ba_{(1-y)}O_{(1-x)}Pd_y$	782.87 / 1566	782.86 / 1789	-	-

Таблица 4	Сволные	ланные по	химическим	состояниям	Вав	различных образцах
таолица т.	Сводные	dumpic no	Arimini icontini	COCTONININI	Dub	

В результате проведенных исследований установлено, что компоненты палладийбариевых катодов имеют нанокристаллитную структуру, при этом размеры кристаллитов по различных кристаллографическим направлениям могут сильно различаться и зависят от технологической предыстории материалов. При этом технологическая предыстория определяет и значения параметров кристаллической структуры нанокристаллитов, которые, в свою очередь, связаны с типом и концентрацией растворенных в них микропримесей. В свою очередь и концентрация, и диффузионная подвижность микропримесей (углерод, кислород, водород), а также компонентов катодного материала (барий, палладий) определяют эффективность формирования на этапе активирования катода его эмиссионных свойств и, в конечном итоге, долговечность катода.

Литература

- Ли И.П. Формирование структуры и физических свойств катодов для разработки малогабаритных магнетронов с безнакальным запуском. Дисс. канд. техн. наук: 01.04.07. М.: МГТУ им. Н.Э. Баумана. 2012. – 123 с.
- 9. Савицкий Е.М., Буров И.В., Литвак Л.Н., Пирогова С.В. Электрические и эмиссионные свойства сплавов. М.: Наука, 1978. 269 с.
- 10.Капустин В.И., Ли И.П., Шуманов А.В., Лебединский Ю.Ю., Заблоцкий А.В. Физический механизм работы скандатных катодов СВЧ приборов // ЖТФ. 2017. Том 87. Вып. 1. С. 105-115.