ИСТОЧНИК ПИТАНИЯ ДЛЯ КОМБИНИРОВАННОГО ДУАЛЬНОГО МАГНЕТРОННОГО РАСПЫЛЕНИЯ HIPIMS+MFMS

DUAL SUPERPOSITION HIPIMS+MFMS POWER SUPPLY

В.О.Оскирко^{1,2} (ORCID: 0000-0001-5167-0133) /oskirkovo@gmail.com **А.Н.Захаров**¹ (ORCID: 0000-0002-1068-6160) / zare17@yandex.ru **А.П.Павлов**² (ORCID: 0000-0002-4018-7098) / APELTom@yandex.ru **С.В.Работкин**¹ (ORCID: 000-0003-0983-5912) / rabotkin@yandex.ru

В.А.Семенов¹ (ORCID: 000-0001-5089-7096) / semenofyjacheslav@gmail.com

V.O.Oskirko (ORCID: 0000-0001-5167-0133), A.N. Zakharov (ORCID: 0000-0002-1068-6160) A.P.Pavlov (ORCID 0000-0002-4018-7098) S.V.Rabotkin (ORCID: 000-0003-0983-5912) V.A.Semenov (ORCID: 000-0001-5089-7096)

¹Институт сильноточной электроники Сибирского отделения РАН, г. Томск ²ООО «Прикладная электроника», г. Томск

В работе представлено описание модульного источника питания, обеспечивающего комбинированные режимы дуального импульсного магнетронного распыления. Источник питания формирует последовательности биполярных импульсов, которые одновременно обеспечивают среднечастотное импульсное магнетронное распыление (MFMS) и магнетронное распыление импульсами высокой мощности (HIPIMS). Такое решение позволяет использовать преимущества обеих технологий, а большое количество регулируемых параметров существенно расширяет возможности системы. Результаты экспериментального исследования комбинированных процессов дуального импульсного распыления HIPIMS + MFMS пленок Al показали, что изменение соотношения мощностей MFMS и HIPIMS позволяет регулировать плотность ионного тока на подложку, а также соотношение ион-атом в потоке распыленного материала.

The paper describes a modular power supply that provides combined modes of dual pulsed magnetron sputtering. The power supply generates sequences of bipolar pulses that simultaneously provide medium-frequency pulsed magnetron sputtering (MFMS) and high-power impulse magnetron sputtering (HIPIMS). This solution allows one to take advantage of both technologies, and a large number of adjustable parameters significantly expand the system's capabilities. The results of an experimental study of dual pulse magnetron sputtering of Al films by superposition HIPIMS + MFMS showed that changing the power ratio of MFMS and HIPIMS allows one to adjust the density of the ion current on the substrate, as well as the ion-atom ratio in the flow of the sputtered material.

Ключевые слова: сильноточное импульсное магнетронное распыление, среднечастотное импульсное магнетронное распыление, источник питания.

Keywords: hybrid HIPIMS+MFMS, co-sputtering, dual mid-frequency magnetron sputtering, power supply.

ВВЕДЕНИЕ

Магнетронное распыление импульсами высокой мощности (High power pulse magnetron sputtering, HiPIMS) является относительно новой технологией высокоионизированного физического осаждения покрытий из паровой фазы (ionized

physical vapor deposition, i-PVD), разработанной на основе технологии direct current magnetron sputtering (DCMS) [1,2]. Отличительной особенностью HIPIMS является использование импульсов с малым коэффициентом заполнения (≥ 10 %), которые позволяют увеличивать импульсную плотность мощности разряда без перегрева магнетронной распылительной системы (МРС). Высокая плотность мощности (до нескольких кВт/см²) вызывает интенсивное распыление и ионизацию материала. Высокая ионизации распыленного материала и плотность ионного бомбардирующего подложку, приводят к значительному изменению свойств растущих пленок, таких как плотность, шероховатость, удельное сопротивление, отражающая способность и т. д. [3,4,5]. Регулируя амплитуду импульсов разрядного тока в HIPIMS можно управлять процессом ионизации, возбуждая определенные частицы [6] и изменяя плотность ион-атомарных потоков. Недостаток HIPIMS заключается в более низкой скорости напыления по сравнению с DCMS и среднечастотным импульсным магнетронным распылением MFMS [7]. Основной причиной этого является возврат ионизированного распыленного материала на мишень под действием электрического поля. Для решения данной проблемы используется несколько подходов. Один из них заключается в применении комбинированных режимов магнетронного распыления, объединяющих HIPIMS с DCMS или MFMS. Это позволяет использовать преимущества HIPIMS при сохранении приемлемой скорости напыления. Возможность реализации подобных комбинированных режимов напрямую зависит от возможностей системы электропитания. В данной работе представлено описание модульной системы электропитания APEL HPP+MFMS, предназначенной для работы в комбинированных режимах дуального магнетронного распыления. Приведена его структурная схема, основные технические параметры. И результаты экспериментов по нанесению пленок Al в комбинированных режимах. Показано, как влияет соотношение мощностей HIPIMS и MFMS на такие параметры процесса, как скорость напыления, плотность ионного тока на подложку.

ОБОРУДОВАНИЕ

На рис. 1 изображена структурная схема источника питания APEL HPP+MFMS. Он состоит из пяти блоков: два блока APEL-10PDC, предназначенных для формирования среднечастотных импульсов, два блока APEL-10HPP, обеспечивающих формирование импульсов высокой мощности, блок APEL-10SB, используемый для подачи потенциала смещения на подложку.

Рис. 1. Структурная схема (a) и внешний вид (б) модульной системы электропитания APEL HPP+MFMS.

Как показано на схеме, блоки APEL-HPP и APEL-SB питаются от трехфазной сети 380 В. В состав APEL-PDC и APEL-SB входит сетевой выпрямитель, инвертор, повышающий трансформатор, формирователь выходных среднечастотных импульсов и

(Москва, МВЦ «Крокус Экспо», 2020, 27 – 29 октября)

система управления. В состав блоков APEL-HPP входит лишь формирователь выходных импульсов высокой мощности и система управления, поэтому они питаются не от сети, а от соседних среднечастотных блоков APEL-PDC.

Блоки APEL-PDC и APEL-HPP поочередно формируют на выходе униполярные импульсы. Выходы блоков соединены таким образом, что на выходе системы образуется последовательность биполярных импульсов, обладающих одинаковой амплитудой напряжения и разной амплитудой тока. Импульсы, формируемые APEL-HPP, обладают более высокими импульсными значениями тока, по сравнению с APEL-PDC, благодаря большей длительности. Последовательность биполярных импульсов напряжения приводит к поочередному распылению мишеней, периодически переходя в сильноточный режим. Блок APEL-SB формирует униполярные импульсы отрицательной полярности. Импульсы APEL-SB могут генерироваться независимо или синхронно с импульсами питания магнетронного разряда. Также APEL-SB может работать в режиме непрерывного выходного тока (DC). Каждый блок способен обеспечивать среднюю выходную мощность 10 кВт, при этом суммарная мощность, передаваемая MPC, не превышает 20 кВт (10 кВт на каждый магнетрон). В таблице 1 представлены основные параметры блоков питания.

Таблица 1. Основные параметры системы электропитания APEL HPP+MFMS.

Параметр	APEL-PDC	APEL-HPP	APEL-SB
Выходная	$0.1 \div 10.0 \text{ kW}$		$0.1 \div 10.0 \text{ kW}$, step
мощность			0.1 kW
Ср. вых. ток	0.1 ÷ 10.0 A	up to 10.0 A	$0.1 \div 10.0 \text{ A}$
Имп. напряжение	100 ÷ 1250 V	up to 1250 V	50 ÷ 1000 V
Имп. ток	up to 50 A	up to 300 A	up to 50 A
Имп. мощность	up to 65 kW	up to 375 kW	up to 375 kW
Частота	10 ÷ 100 kHz	$0.02 \div 5.00 \text{ kHz}$	1 ÷ 50 kHz
импульсов			
Длительность	$2 \div 50 \mu\text{s}$, step 1	5 ÷ 250 μs, step 1 μs	2 ÷ 50 μs, step 1 μs
имп.	μs		
Питание	3×380 В 50/60 Гц		
Охлаждение	воздушное		
Bec	35 кг	22 кг	26 кг

МЕТОДЫ ИССЛЕДОВАНИЯ

Чтобы продемонстрировать возможности разработанной системы электропитания она была подключена к дуальной MPC, состоящей из двух магнетронов APEL-M. Магнетроны имели несбалансированное магнитное поле и вместе образовывали замкнутую конфигурацию магнитного поля. На магнетронах были установлены алюминиевые мишени размером $60\times10~\text{cm}^2$. На расстоянии 10~cm от мишеней располагалась плоская подложка из нержавеющей стали площадью $800~\text{cm}^2$. Остаточное давление в камере составляло $4\times10^{-4}~\text{Па}$. Пленки AI наносились на кремниевые подложки при давлении аргона 0,67~Па. С помощью цифрового осциллографа фиксировалась форма импульсов разрядного тока и напряжения, а также величина ионного тока на подложку. Перед нанесением покрытия проводилась предварительная очистка подложки в течение 10~минут при мощности разряда 1~кВт и напряжении смещения подложки - 1000~В. Напыление производилось в течение 30~мин. В пяти режимах осаждения изменялось соотношение между мощностью среднечастотных импульсов и импульсов высокой мощности. Суммарная мощность разряда при этом оставалась неизменной — 8~кВт (т.е. 4~кВт на каждый магнетрон).

РЕЗУЛЬТАТЫ

На рис. 2 представлены осциллограммы импульсов разрядного тока и напряжения. Также на осциллограммах показан ионный ток, протекающий на подложку, на которую подавался потенциал смещения -50 В. Первая осциллограмма (рис. 2.а) демонстрирует режим среднечастотного распыления, когда импульсы высокой мощности не использовались. На рис. 2.б представлен комбинированный режим, в котором средняя мощность среднечастотных импульсов $P_{\rm mf}$ составляла 25% от общей величины. Средняя мощность импульсов высокой мощности $P_{\rm hpp}$, соответственно, составляла 75%. На осциллограмме хорошо заметно, что в среднечастотном режиме ионный ток практически не изменяется. В комбинированном режиме величина ионного тока существенно увеличивается во время импульса высокой мощности, после чего происходит плавное уменьшение.

Рис. 2 – Осциллограмма импульсов разрядного тока и напряжения в MFMS режиме (a) и комбинированном режиме 75% HIPIMS +25% MFMS.

Графики на рис. 3 показывают, как на параметры процесса осаждения влияет соотношение между $P_{\rm mf}$ и $P_{\rm hpp}$, при неизменной общей мощности разряда.

Рис. 3 — Зависимости скорости напыления покрытия (а), плотности ионного тока (б) и отношения количества ионов к количеству атомов в потоке осаждаемого материала (в) от соотношения средней мощности среднечастотных импульсов P_{mf} и средней мощности импульсов высокой мощности P_{hpp} .

Как видно из графика на рис. 3.а, увеличение доли $P_{\rm hpp}$ ведет к снижению скорости напыления покрытия. Например, в режиме № 5 ($P_{\rm hpp}$ - 100%) скорость в два раза ниже, чем в режиме № 1 ($P_{\rm mf}$ - 100%). Снижение скорости напыления является вполне ожидаемым результатом, который объясняется увеличением степени ионизации распыленных атомов А1 и их возвратом на мишень под действием электрического поля. С одной стороны, это является нежелательным эффектом, поскольку приводит к снижению производительности напылительной установки. С другой стороны, снижение скорости напыления косвенно указывает на повышение степени ионизации распыленных частиц, и, следовательно, увеличении доли ионов металла в ионном потоке, бомбардирующем растущее покрытие.

(Москва, МВЦ «Крокус Экспо», 2020, 27 – 29 октября)

Для точного определения изменения доли ионов металла в потоке, бомбардирующем подложку, необходимо проведение специальных измерений, которые не входили в планы данной работы. Но были проведены измерения плотности ионного тока на подложку, результаты которых представлены на рис. 3.б. В отличие от скорости напыления, общее количество ионов, бомбардирующих подложку, возрастает при повышении доли P_{hpp} . Средняя плотность ионного тока за период возрастает с 1,23 мА/см² в режиме № 1 до 1,73 мА/см² в режиме № 5. Уменьшение скорости напыления покрытия и рост плотности иного тока на подложку приводят к существенному увеличению отношения количества ионов F_i , бомбардирующих подложку, к числу нейтральных атомов металла F_{Me} , участвующих в формировании покрытия.

Результаты расчетов представлены на рис. 3.в. В данных условиях ион-атомарное отношение F_i/F_{Me} увеличивается приблизительно в три раза с 0.48 в режиме № 1 до 1,38 в режиме № 5. Настройка параметра F_i/F_{Me} в процессе напыления может привести к положительным эффектам. Например, увеличение F_i/F_{Me} позволяет минимизировать негативные эффекты, возникающие при высокоэнергетичной ионной бомбардировке.

ВЫВОДЫ

Гибридный процесс HIPIMS+MFMS является очередным шагом в развитии импульсных технологий магнетронного распыления. Разработанный источник питания обеспечивает широкий набор регулируемых параметров, которые могут оказывать существенное влияние на процесс формирования покрытия. Продемонстрировано, что соотношение мощностей HIPIMS и MFMS в суммарной мощности разряда является параметром, позволяющим регулировать скорость напыления покрытия и плотность ионного тока, протекающего на подложку.

Работа выполнена в рамках гранта Российского фонда фундаментальных исследований №18-42-703005.

ЛИТЕРАТУРА

- 1. V. Kouznetsov, K. Macák, J. Schneider, U. Helmersson, I. Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surf. Coat. Technol. 122 (1999) 209–293.
- 2. K. Macák, V. Kouznetsov, J. Schneider, U. Helmersson, I. Petrov. Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge. Journal of Vacuum Science and Technology. A18(4) (2000) 1533–1537.
- 3. A. Solovyev, V. Oskirko, V. Semenov, K.Oskomov, S. Rabotkin, Comparative Study of Cu Films Prepared by DC, High-Power Pulsed and Burst Magnetron Sputtering. Journal of electronic materials. 45(8) (2016) 4052-4060.
- 4. A. Zakharov, A. Solovev, K. Oskomov, V. Oskirko, V. Semenov, M. Syrtanov, Yu. Bordulev. Properties of Molybdenum Films Produced by High-Power Impulse Magnetron Sputtering. Russian Physics Journal. 60(8) (2017) 1336-1340.
- 5. A. Solovyev, V. Semenov, V. Oskirko, K. Oskomov, A. Zakharov, S. Rabotkin. Properties of ultra-thin Cu films grown by high power pulsed magnetron sputtering. Thin Solid Films. 631 (2017) 72–79.
- 6. A. Ehiasarian, J. Andersson, A. Anders, Distance-dependent plasma composition and ion energy in high power impulse magnetron sputtering. J. Phys. D: Appl. Phys. 43 (2010) 275204.
- 7. J. Emmerlich, S. Mráz, R. Snyders, K. Jiang, J. Schneider. The physical reason for the apparently low deposition rate during high-power pulsed magnetron sputtering. Vacuum 82 (2008) 867-870.